Data Modeling & Use Cases

Professor Larry Heimann
Application Design & Development
Information Systems Program

Why Data Modeling?

- A bridge to convert requirements into a database

- Can be done early in the process

- Cheaper to fix errors at this stage

« Understandable to users and developers

« Data is critical!

- Entity-Relationship modeling is fairly easy to do

Class Problem

A house for sale has its address listed in the MLS directory for
maximum exposure (and, in theory, a quicker sale). In addition, a

MLS listing must have an asking price, listing agent,
expiration dates, and commissions for listing and sel
All listings last for 120 days and can be renewed. A

Isting anad
INng agents.

NousSe Can

only be listed once at any given time, but it can be relisted with a
different agent once the original listing has expired. All agents must
belong to a licensed real estate agency, although some agency are
sole-proprietorships with one person and some are corporations
with many agents. The MLS directory also has a sales section
which shows the selling price, selling date and selling agent as well

as the reference to the listing.

Draw out a simple ERD to capture the essential information in this

example.

ERD :: MLS Example

List of all nouns
House o @9
-address

MiS-Directory
MLS Listing |-

name

affiliated . =
with

A\
Agent

O ri Ce created by ;ﬂsgiﬁne sold by
. IStlng ageﬂt) ?gsér?g;r:g (FK)
- listing date
- expiration date - 0 W
. sting ' ale
* commission - ||St|n9 lt?odrs)(}e(i)d (FK) :idsti(nPgKi)d (FK)
' ' ' listing agent id (FK) EEELCERLE selling agent id (FK)
» commission - selling askng price) T i o
IS mg commnsspn I Sale aate
Agent (general) tng e

expiration date

Agency
MLS Sale

have "

- selling price | O
- selling date a e
| id (PK)
. Se |ng agent iittr;?et address
- listing reference -

owner

From the makers of PostgreSQL...

Don't use table inheritance

Don't use table inheritance =). If you think you want to, use foreign keys instead.

Why not?

Table inheritance was a part of a fad wherein the database was closely coupled to object-oriented code. It turned out that
coupling things that closely didn't actually produce the desired results.

When should you?

Never ...almost. Now that table partitioning is done natively, that common use case for table inheritance has been replaced
by a native feature that handles tuple routing, etc., without bespoke code.

One of the very few exceptions would be temporal tables) extension if you are in a pinch and want to use that for row
versioning in place of a lacking SQL 2011 support. Table inheritance will provide a small shortcut instead of using unzon aLn
to get both historical as well as current rows. Even then you ought to be wary of caveats & while working with parent table.

https://wiki.postgresqgl.org/wiki/Don%27t Do This#Don.27t use table inheritance

https://wiki.postgresql.org/wiki/Don't_Do_This#Don.27t_use_table_inheritance

Summary :: ERD

|dentify all entities and attributes

Define relationships between entities

Determine connectivity and transform many-to-many relationships

Ascertain whether required/optional

Recognize that data modeling is usually iterative process

A pro eCt We MedicineCost nam‘;“'"‘" " X
. ::noﬁi(;;g?__ﬁm active Pet Owner
are S't Jd In start date name first_name
end _date animal_id last_name
= v owner_id - | Street
+ Aqlmalll.edlclne female ~ o city
animal_id date_of_brith state
+<| medicine_id active zip
recm_num_units phone
+ ¥ email
Medicine active
name Dosage Visit
description visit_id pet_id
stock_amount H . Emedicine_id - H date
admin_method units_given weight
unit discount overnight_stay | User
vaccine total_charge first_name
— last_name
T role
username
password_dg
Procedure Treatment active
name visit_id
description —H——-C0O-<] procedure_id PO
length_of_time successful
active discount
| -
ProcedureCost
procedure_id
cost
start_date
end_date

Pittsburgh Animal
Treatment Services
ERD

Converting ERD to
datalbase design

Database Design in 3NF

owners (id, first_name, last_name, street, city, state, zip, phone, email, active)

animals (id, name, active)

medicines (id, name, description, stock_amount, method, unit, vaccine)

users (id, first_name, last_name, role, username, password_digest, active)

Underiines:

fieids are primary keys;

Solid undedined
Datted wrnederliped fields are foreign keys;
Double underiined flelds are composite keys that are both primary and foreign keys.

Database Design Notes:

1.

Strictly speaking, having zip code in the owners table creates a transitive dependency, but
given the limited size of the system (the greater Pittsburgh area) there is no need to
normalize and move zip code and primary city & state into its own table.

To minimize the impact of rounding errors associated with floats, we will follow the
industry norm of recording all costs as integers with the base monetary unit being cents,
not dollars.

In a similar vien, length_of_time in the procedures table is recorded as an integer
representing the number of minutes the procedure is expected to take.

A medicine's current cost is determined by finding the one medcine_cost record that has a
NULL value in end_date. Similarly a procedure's current cost is found by identifying the
one record that has a null end_date. Triggers will need to set up to automatically add the
end date to the record prior to adding a new record to these tables.

Since usernames are used for uniquely identifying users during login, the values of
username must be unique even though it is not a primary key.

Prof. H’s first rule of software development:

It always takes longer than you think to develop software.

Corollary to the first rule:

Start your work early!

Prof. H’s second rule of software development:

Add safeguards whenever you can. You can’'t imagine all the
ways users will try to use and abuse your software.

Corollary to the second rule:

Add safeguards to the database because you can’t
assume it will always be coupled with your software.

Creating a data

dictionary

Field Data Type Description Example Data
id (PK) I _The ID for this table (auto- 180"
increment)
name* STRTHNG The first name of the owner Dosty
. . % A foreign key indicating the
™ ?
animal_ld (FK) animal type of the pet
- = A foreign key indicating the -
owner_id (FK) INT owner of the pet. 243
Pl A boolean that is true if the pet e
female b is femal and false otherwise it
date of birth G Date when pet was born, if 1999-10-19
e Known
active ROOTEAN 1 if active; O otherwise T

visits

Field Data Type Description Example Data
. The |D for this table (auto-
TN ?
id (PK) increment)
date* DATE The date of the pet's visil 2020=-01=3_
= A foreign key linking a petto a 4
INT . = 1
pet_id (FK) particular visit '
waight FLOAT Thq vyeig ht of the pet at the time 12.0
of visit, measured in pounds
: s S A boolean that is true if the pet £t
ROOTFEAN ==
ovamight_stay e is femal and false otherwise i
: Amaount in dollars the owner »
TTOAT 1°6.40
total_charge J was charged for the visit

* Indicates a non-key attribute that s required. All primary and foreign keys are required.

Dealing with primary keys

* Purpose of primary keys

* Problems with Rails PKs
 duplicate entries sneak by
* generic name of id is meaningless
- existence of redundant keys

« can’t use USING in joins or
natural joins

- Composite keys

Use cases defined

“A use case is a methodology used in system analysis to identify,

clarify, and organize system requirements.

The use case is made up of a set of possible sequences of interactions
between systems and users in a particular environment and related to a

particular goal.

It consists of a group of elements (for example, classes and interfaces)
that can be used together in a way that will have an effect larger than the
sum of the separate elements combined. The use case should contain all
system activities that have significance to the users. A use case can be
thought of as a collection of possible scenarios related to a particular
goal, indeed, the use case and goal are sometimes considered to be
synonymous.”

Use cases characteristics

Organizes functional requirements

Models the goals of system/actor (user) interactions

Records paths (called scenarios) from trigger events to goals

Describes one main flow of events (also called a basic course of action), and
possibly other ones, called exceptional flows of events (also called alternate
courses of action)

Is multi-level, so one use case can use the functionality of another.

Use case actors

e Any human actor interacting
with a graphical user interface
IS almost always considered a
complex actor

¢ Humans limited to read-only
access may be considered
average actors

¢ [f the system is interacting with
an external APl (such as
Google Calendar, in this case),
then it can lbe considered a
simple actor.

Actor Name

Level

Description

Vet

Complex

This user administers the site and has complete
control over all operations using an online
graphical user interface.

Assistant

Complex

This user has read access to all aspects of the
PATS system and has write access to owners,
pets and visits, but not medicines or procedures

Owner

Complex

This user can log in to see a list of pets, view
and edit some of the details of their pets as well
as their personal information

Guest

Average

This user has read-only access and is limited to
semi-static content, such as ‘About PATS’ and
‘Privacy Policy’ pages

Google Calendar
API

Simple

System is registered with, and interacts with,
the Google Calendar API to handle scheduling of
visits

Use case levels

o A-level use cases are “must
haves” — without it the
system is of little or no value

e B-level use cases are “want
to have” — they make life
much easier, but system is
still usable

e (-level use cases are “like to
have” — nice, but could
easlly live without

e Build functionality in order of
priority; i.e., build out A-level
functionality before working
on B- or C-level cases

A-Level Use Cases

Owner

Use Case Name | Actor(s) Description
Vet,
Add Owner : The user can add a new owner to the system.
Assistant
Vet, The user can edit an existing owner in the
Edit Owner Assistant, system. Owners can only edit their own
Owner personal data; vets can edit everyone.
The user can delete an owner from the system.
Delete Owner Vet Used sparingly as most will simply be
deactivated and the record retained.
: Vet, The user can view a list of all the owners in the
List All Owners Assistant system (active and inactive lists separated ou).
Vet The user can view the details of the owner’s
View Owner Ass;stant record in the system along with list of the
Details hinkr d owner's pets and visit history. Owners can only
see their own data.
Add Pet Vet The user can add a new pet to the system
Assistant :
Edit Pet Vet{ The user can edit an existing pet in the system.
Assistant
The user can delete a pet from the system.
Delete Pet Vet Used sparingly as most will simply be
deactivated and the record retained.
Vet The user can list all pets in the system,
List All Pets < including both active and inactive pets (but in
Assistant .
separate lists).
Vet, The user can view the details of a pet's record in
View Pet Details Assistant, the system, along with a list of all the pet’s pror

visits to PATS.

C

RUD operations

Create
Read

Update
Delete

