
Data Modeling & Use Cases

Professor Larry Heimann

Application Design & Development

Information Systems Program

Why Data Modeling?

• A bridge to convert requirements into a database

• Can be done early in the process

• Cheaper to fix errors at this stage

• Understandable to users and developers

• Data is critical!

• Entity-Relationship modeling is fairly easy to do

Class Problem

A house for sale has its address listed in the MLS directory for
maximum exposure (and, in theory, a quicker sale). In addition, a
MLS listing must have an asking price, listing agent, listing and
expiration dates, and commissions for listing and selling agents.
All listings last for 120 days and can be renewed. A house can
only be listed once at any given time, but it can be relisted with a
different agent once the original listing has expired. All agents must
belong to a licensed real estate agency, although some agency are
sole-proprietorships with one person and some are corporations
with many agents. The MLS directory also has a sales section
which shows the selling price, selling date and selling agent as well
as the reference to the listing.

Draw out a simple ERD to capture the essential information in this
example.

List of all nouns
House

•address
MLS Directory
MLS Listing

• price
• listing agent
• listing date
• expiration date
• commission - listing
• commission - selling

Agent (general)
Agency
MLS Sale

• selling price
• selling date
• selling agent
• listing reference

From the makers of PostgreSQL…

https://wiki.postgresql.org/wiki/Don%27t_Do_This#Don.27t_use_table_inheritance

https://wiki.postgresql.org/wiki/Don't_Do_This#Don.27t_use_table_inheritance

Summary :: ERD

• Identify all entities and attributes

• Define relationships between entities

• Determine connectivity and transform many-to-many relationships

• Ascertain whether required/optional

• Recognize that data modeling is usually iterative process

A project we
are studying

Pittsburgh Animal
Treatment Services

ERD

Converting ERD to
database design

Prof. H’s first rule of software development:
It always takes longer than you think to develop software.

Corollary to the first rule:
Start your work early!

Prof. H’s second rule of software development:
Add safeguards whenever you can. You can’t imagine all the

ways users will try to use and abuse your software.

Corollary to the second rule:
Add safeguards to the database because you can’t
assume it will always be coupled with your software.

Creating a data
dictionary

Dealing with primary keys

• Purpose of primary keys

• Problems with Rails PKs

• duplicate entries sneak by

• generic name of id is meaningless

• existence of redundant keys

• can’t use USING in joins or
natural joins

• Composite keys

Use cases defined

“A use case is a methodology used in system analysis to identify,
clarify, and organize system requirements.

The use case is made up of a set of possible sequences of interactions
between systems and users in a particular environment and related to a
particular goal.

It consists of a group of elements (for example, classes and interfaces)
that can be used together in a way that will have an effect larger than the
sum of the separate elements combined. The use case should contain all
system activities that have significance to the users. A use case can be
thought of as a collection of possible scenarios related to a particular
goal, indeed, the use case and goal are sometimes considered to be
synonymous.”	

Use cases characteristics

• Organizes functional requirements

• Models the goals of system/actor (user) interactions

• Records paths (called scenarios) from trigger events to goals

• Describes one main flow of events (also called a basic course of action), and
possibly other ones, called exceptional flows of events (also called alternate
courses of action)

• Is multi-level, so one use case can use the functionality of another.

Use case actors

• Any human actor interacting
with a graphical user interface
is almost always considered a
complex actor

• Humans limited to read-only
access may be considered
average actors

• If the system is interacting with
an external API (such as
Google Calendar, in this case),
then it can be considered a
simple actor.

Use case levels

• A-level use cases are “must
haves” — without it the
system is of little or no value

• B-level use cases are “want
to have” — they make life
much easier, but system is
still usable

• C-level use cases are “like to
have” — nice, but could
easily live without

• Build functionality in order of
priority; i.e., build out A-level
functionality before working
on B- or C-level cases

CRUD operations

Create
Read
Update
Delete

