
Introduction to Ruby, MVC, and
the Rails Framework

Professor Larry Heimann

Application Design & Development

Information Systems Program

Philosophy of Ruby

“For me, the purpose of life is, at least partly, to
have joy. Programmers often feel joy when they
can concentrate on the creative side of
programming, so Ruby is designed to make
programmers happy.”

— Yukihiro Matsumoto

Three Principles

1. Conciseness—Writing code in Ruby should involve the minimum amount of
commands necessary. Code should be terse but also understandable.

2. Consistency—Ruby coding should follow common conventions that make
coding intuitive and unambiguous.

3. Flexibility—There is no one right way. You should be able to pick the best
approach for your needs and be able to even modify the base classes if
necessary.

These three together lead to an important concept in Ruby —
the principle of least surprise.

Comic of the Day...

The Ruby Way

Everything is an object

Looking at Strings, we see:

Revising the String class

Destructive and Predicate methods

Architecting Software

• Needs to be:

• understandable

• extensible

• Many different architecture patterns exist

• Model-View-Controller (MVC) one of the most popular

MVC is like ...

Model: Taking Care of Business

View: Looking Good

View: Partials

Controller: Holding It All Together

Controllers: Too Fat To Be Useful

Controllers: Variations

Controller: Traffic Cop

MVC as used in Rails

MODELS, VIEWS, AND CONTROLLERS 24

Figure 2.2: Rails and MVC

Ruby on Rails is an MVC framework, too. Rails enforces a structure for your
application—you develop models, views, and controllers as separate chunks of
functionality and it knits them all together as your program executes. One of
the joys of Rails is that this knitting process is based on the use of intelligent
defaults so that you typically don’t need to write any external configuration
metadata to make it all work. This is an example of the Rails philosophy of
favoring convention over configuration.

In a Rails application, incoming requests are first sent to a router, which
works out where in the application the request should be sent and how the
request itself should be parsed. Ultimately, this phase identifies a particular
method (called an action in Rails parlance) somewhere in the controller code.
The action might look at data in the request itself, it might interact with the
model, and it might cause other actions to be invoked. Eventually the action
prepares information for the view, which renders something to the user.

Figure 2.2, shows how Rails handles an incoming request. In this example, the
application has previously displayed a product catalog page and the user has
just clicked the Add To Cart button next to one of the products. This button
links to http://my.url/store/add_to_cart/123, where add_to_cart is an action in our
application and 123 is our internal id for the selected product.1

1. We cover the format of Rails URLs later in the book. However, it’s worth pointing out here that
having URLs perform actions such as add to cart can be dangerous. See Section 21.6, The Problem

with GET Requests, on page 463 for more details.

Report erratum
Prepared exclusively for Sharon Blazevich

Class Exercise

To know the Model-View-Controller,
you must be the

Models, Views and Controllers...

