Introduction to Ruby, MVC, and
the Rails Framework

Professor Larry Heimann

Application Design & Development
Information Systems Program

Philosophy of Ruby

“For me, the purpose of life is, at least partly, to
have joy. Programmers often feel joy when they
can concentrate on the creative side of
programming, so Ruby is designed to make
programmers happy.”

— Yukihiro Matsumoto

Three Principles

1. Conciseness—Writing code in Ruby should involve the minimum amount of
commands necessary. Code should be terse but also understandable.

2. Consistency—Ruby coding should follow common conventions that make
coding intuitive and unambiguous.

3. Flexibility— There is no one right way. You should be able to pick the best
approach for your needs and be able to even modify the base classes if
necessary.

These three together lead to an important concept in Ruby —
the principle of least surprise.

Cowtic of the Day...

FnCluag {sfaioc.yny i
int mgin(void) l

L

NICE TRY.

int count

for ((oun“" =13 count<=500 s count+ +) |
printf ("I will not Throw paper dirplanes n class,”) |

refurn O Il

- e
tiaianel o
. ———e . e . . — — - __xg

The Ruby Way

500.times { puts "I will not throw paper airplanes” }

(1..500).each { Iil puts "I will not throw paper airplanes” }

for 1 in (1..500) do
puts "#{1}. I will not throw paper airplanes™
end

—verything is an object

Looking at Strings, we see:

phrase = "1 AM arthur, king of the britons”

puts phrase.class

puts phrase.length

puts phrase.capitalize
puts phrase.upcase

puts phrase.downcase

puts phrase.reverse

puts phrase.upcase.reverse
puts phrase.split

String

>> 32

>> I am arthur, king of the britons
>> I AM ARTHUR, KING OF THE BRITONS
>> 1 am arthur, king of the britons
>> snotirb eht fo gnik ,ruhtra MA 1
>> SNOTIRB EHT FO GNIK ,RUHTRA MA I
>> 1

>> AM

>> arthur,

>> king

>> of

>> the

>> britons

>> 1 AM

>> rthur, king of the britons

>> 5

>> arthur

\/
A4

puts phrase.split('a’)

puts phrase.index('a’)
puts phrase[5..12]
puts phrase.capwords

~> -:14: undefined method “capwords' for "1 AM arthur, king of the britons”:String (NoMethodError)

H A & F HF H T F HFHF T TR AETFHTRTHEHE W

=

Revising the String class

class String
def capwords
~words = self.split
revised = %w/|]
~words.each do |wordl
revised << word.capitalize
end
final = revised.join(" ")
end
end

phrase = "1 AM arthur, king of the britons”
phrase.capwords # => "I Am Arthur, King Of The Britons"

Destructive and Predicate methods

str "fred”
str.capitalize
puts str
str.capitalize!
puts str
str.reverse
puts str
str.reverse!
puts str

str.include?('ed")

Architecting Software

* Needs to be:

« understandable

« extensible

- Many different architecture patterns exist

- Model-View-Controller (MVC) one of the most popular

MVC is like ...

Model: Taking Care of Business

Looking Good

View

View: Partials

Controller: Holding It All Together

Controllers: Too Fat To Be Useful

Controllers: Variations

-

povee = “" \
‘;‘, -1
5 -

/
‘/’
pedTert 'SE

- e =] ||”
‘ Doﬁb‘e %9 = eS‘N\

‘\RE\ ({E

B \,-‘

Controller: Traffic Cop

MVC as used in Rails

y Routing
806 Pragprog Books Online Store = * @

< > |[&][+] @nupy/iocainost:3000store
= PraGMATIC BOOKSHELF i[

Home

Store
Controller

Active
Record
Model

@ http://my.url/store/add_to_cart/123
(@ Routing finds Store controller

@ Controller interacts with model
@ Controller invokes view
B View renders next browser screen

- —
—>
<+— | Database
— e

Class Exercise

To know the Model-View-Controller,

you must be the
Models, Views and Controllers...

