
Basic Rails Models and Database Access

Professor Larry Heimann

Application Design & Development

Information Systems Program

With additional slides from Prof. Houda Bouamor, CMU-Q

Why Ruby on Rails?

“Ruby on Rails is astounding. Using it is like
watching a kung-fu movie, where a dozen bad-ass
frameworks prepare to beat up on the little
newcomer only to be handed their asses in a
variety of imaginative ways.”

— Nathan Torkington
O'Reilly Program Chair for OSCON

Rails Basic Commands

• The ones we already know:

• rails new <app_name>

• rails generate #or rails g

• rails server #or rails s

• rails server -p <port number> #e.g., rails server -p 3030

• rails routes

• rails db:migrate

• rails console # or rails c

• rails —help #check all the rails commands available for
you

• The ones we will learn about later this semester

• rails test

• rails db:rollback

Model basics

• ActiveRecord does the heavy lifting

• Basic relationships and scopes

• Validations to ensure data integrity

• Other methods added as needed

Key Idea:
Models hold all the data

& business logic

Goals of Active Record

• Make working with databases easier

• Reduce repetition in code

• Cut down on configuration needed to make applications work

Object-Relational Mapping (ORM)

• Database access before ORM: Using special APIs

• Prepare a SQL statement

• Issue a query

• Get record from the result

• Extract field(s) from the record

• Object Relational Mapping (ORM): simplifies the use of databases in
applications.

• Provides an interface and binding between the tables in a relational

database

• Uses objects to hold database records

• Manages the movement of information between objects and the back-end

database.

• Manage relationships between tables (joins): using linked data structures.

ActiveRecord: The Rails ORM

• ActiveRecord is the ORM layer that is supplied with Rails. It is the part of
Rails that implements your application’s model.

• ActiveRecord: “An object that wraps a row in a database table or view,
encapsulates the database access, and adds domain logic on that data.”
Martin Fowler, Patterns of Enterprise Application Architecture (2002), Page 160

• Each subclass of ActiveRecord::Base (i.e., Proverb class), wraps a separate
database table (i.e., proverbs table).

• ActiveRecord models automatically provide getter and setter methods related
to each field in the model. Additional getter and setter methods can be
added later if virtual attributes are needed.

Connecting to a Database

• Key 1: database.yml

• Located in the config/ directory

• Contains connection information for 3+ levels

• development

• test

• production

• others possible, such as staging

• Key 2: Gemfile provides adapter

• Typically use sqlite3 in development & test

• Typically use Postgres or MySQL in production

Building the Database with Migrations

Rails migrations

• Migrations are stored as files in the db/migrate directory, one for
each migration class.

• The name of the file is of the
form YYYYMMDDHHMMSS_create_proverbs.rb

• Rails uses the timestamp to determine which migration should be
run and in what order.

• Migrations are used to:

• Create tables

• Change tables: add column, rename column, remove column, etc.

• Drop tables

Primary Key and Active Record

• Active Record gives you a way of overriding the default name of the primary
key for a table.

• For example, we may be working with an existing table that uses the ISBN as
the primary key for the books table.

• Problem is that a lot of Rails shortcuts can be short-circuited by this

• Read more about this: Agile Web Development with Rails 5.1, chapter 20,
Locating and Traversing Records: https://learning.oreilly.com/library/view/
agile-web-development/9781680502985/f_0107.xhtml

class Book < ApplicationRecord

 self.primary_key = “isbn”

end

https://learning.oreilly.com/library/view/agile-web-development/9781680502985/f_0107.xhtml
https://learning.oreilly.com/library/view/agile-web-development/9781680502985/f_0107.xhtml
https://learning.oreilly.com/library/view/agile-web-development/9781680502985/f_0107.xhtml

Migration Data Types

ANATOMY OF A MIGRATION 268

 db2 mysql openbase oracle

:binary blob(32768) blob object blob

:boolean decimal(1) tinyint(1) boolean number(1)

:date date date date date

:datetime timestamp datetime datetime date

:decimal decimal decimal decimal decimal

:float float float float number

:integer int int(11) integer number(38)

:string varchar(255) varchar(255) char(4096) varchar2(255)

:text clob(32768) text text clob

:time time time time date

:timestamp timestamp datetime timestamp date

 postgresql sqlite sqlserver sybase

:binary bytea blob image image

:boolean boolean boolean bit bit

:date date date datetime datetime

:datetime timestamp datetime datetime datetime

:decimal decimal decimal decimal decimal

:float float float float(8) float(8)

:integer integer integer int int

:string (note 1) varchar(255) varchar(255) varchar(255)

:text text text text text

:time time datetime datetime time

:timestamp timestamp datetime datetime timestamp

Note 1: character varying(256)

Figure 16.1: Migration and Database Column Types

Report erratum
Prepared exclusively for Sharon Blazevich

ANATOMY OF A MIGRATION 268

 db2 mysql openbase oracle

:binary blob(32768) blob object blob

:boolean decimal(1) tinyint(1) boolean number(1)

:date date date date date

:datetime timestamp datetime datetime date

:decimal decimal decimal decimal decimal

:float float float float number

:integer int int(11) integer number(38)

:string varchar(255) varchar(255) char(4096) varchar2(255)

:text clob(32768) text text clob

:time time time time date

:timestamp timestamp datetime timestamp date

 postgresql sqlite sqlserver sybase

:binary bytea blob image image

:boolean boolean boolean bit bit

:date date date datetime datetime

:datetime timestamp datetime datetime datetime

:decimal decimal decimal decimal decimal

:float float float float(8) float(8)

:integer integer integer int int

:string (note 1) varchar(255) varchar(255) varchar(255)

:text text text text text

:time time datetime datetime time

:timestamp timestamp datetime datetime timestamp

Note 1: character varying(256)

Figure 16.1: Migration and Database Column Types

Report erratum
Prepared exclusively for Sharon Blazevich

ANATOMY OF A MIGRATION 268

 db2 mysql openbase oracle

:binary blob(32768) blob object blob

:boolean decimal(1) tinyint(1) boolean number(1)

:date date date date date

:datetime timestamp datetime datetime date

:decimal decimal decimal decimal decimal

:float float float float number

:integer int int(11) integer number(38)

:string varchar(255) varchar(255) char(4096) varchar2(255)

:text clob(32768) text text clob

:time time time time date

:timestamp timestamp datetime timestamp date

 postgresql sqlite sqlserver sybase

:binary bytea blob image image

:boolean boolean boolean bit bit

:date date date datetime datetime

:datetime timestamp datetime datetime datetime

:decimal decimal decimal decimal decimal

:float float float float(8) float(8)

:integer integer integer int int

:string (note 1) varchar(255) varchar(255) varchar(255)

:text text text text text

:time time datetime datetime time

:timestamp timestamp datetime datetime timestamp

Note 1: character varying(256)

Figure 16.1: Migration and Database Column Types

Report erratum
Prepared exclusively for Sharon Blazevich

ANATOMY OF A MIGRATION 268

 db2 mysql openbase oracle

:binary blob(32768) blob object blob

:boolean decimal(1) tinyint(1) boolean number(1)

:date date date date date

:datetime timestamp datetime datetime date

:decimal decimal decimal decimal decimal

:float float float float number

:integer int int(11) integer number(38)

:string varchar(255) varchar(255) char(4096) varchar2(255)

:text clob(32768) text text clob

:time time time time date

:timestamp timestamp datetime timestamp date

 postgresql sqlite sqlserver sybase

:binary bytea blob image image

:boolean boolean boolean bit bit

:date date date datetime datetime

:datetime timestamp datetime datetime datetime

:decimal decimal decimal decimal decimal

:float float float float(8) float(8)

:integer integer integer int int

:string (note 1) varchar(255) varchar(255) varchar(255)

:text text text text text

:time time datetime datetime time

:timestamp timestamp datetime datetime timestamp

Note 1: character varying(256)

Figure 16.1: Migration and Database Column Types

Report erratum
Prepared exclusively for Sharon Blazevich

ActiveRecord: Fundamentals

• Table names are plural and class names are singular

• If class contains multiple capital words, table has underscore between
words : i.e, TaxAgency -> tax_agencies

Plurals vs. Singular in Rails

OwnersController
owners table

has_many :pets
@owner.pets

Pet model

belongs_to :owner
@pet.owner

Associations in Rails

• In Rails, a relationship or an association is a connection between two Active
Record models

• Why Relationships?

• Because they make common operations simpler and easier in your code.

• Relationships allow us to add foreign key information in Rails model

A slice of the
PATS system

Relationships

(see examples in PATS)

ActiveRecord creates SQL

(examples given in class)

Scenario: Owner and Pet models

• For example, our Rails application includes a model for owners and a model
for pets.

• Each owner can have many pets. Without associations, the model
declarations looks like this:

class Owner < ApplicationRecord
end

class Pet < ApplicationRecord
end

Scenario: Owner and Pet models

• To add a new pet for an existing owner, we’d need to include the owner_id as a
foreign key.

• When we’d like to delete owner having id=1, we should ensure that all his pets
get deleted as well.

In Rails

• With Active Record associations, we can streamline these - and other -
operations by declaratively telling Rails that there is a connection between
the two models.

• Active Record supports the three common types of relationship between
tables:

1.one-to-one

2.one-to-many

3.many-to-many

• These relationships are indicated by adding declarations to models:
has_one, has_many, belongs_to, and the wonderfully named
has_and_belongs_to_many.

Types of Associations

• Rails supports six types of associations:

1.belongs_to

2.has_many

3.has_many :through

4.has_one

5.has_one :through

6.has_and_belongs_to_many

The belongs_to Association

• A belongs_to association sets up a one-to-one connection with another
model, such that each instance of the declaring model "belongs to" one instance
of the other model.

• For example, and each pet can be assigned to exactly one owner.

class Pet < ApplicationRecord

 belongs_to :owner

end

! belongs_to associations must use the

 singular term (owner and not owners!).

The has_many Association

• A has_many association indicates a one-to-many connection with another
model

• You'll often find this association on the "other side" of a belongs_to association

• This association indicates that each instance of the model has zero or more

instances of another model.

• For example, and each owner can be have assigned to it many pets.

class Owner < ApplicationRecord

 has_many :pets

end

! has_many associations must use the

 plural term (pets and not pet!).

The has_one Association

• The has_one association creates a one-to-one match with another model.

• In database terms, this association says that the other class contains the
foreign key. If this class contains the foreign key, then you should
use belongs_to instead.

• There’s an important rule illustrated here: the model for the table that contains
the foreign key always has the belongs_to declaration.

The has_and_belongs_to_many Association

• An employee can belong to several projects

• And each project may have several employees.

• This is an example of a many-to-many relationships.

• In Rails we can express this by adding the has_and_belongs_to_many declaration
to both models.

Employee Project
Project

Employee

The has_and_belongs_to_many Association

Employee Project
Project

Employee

class Employee < ApplicationRecord

 has_and_belongs_to_many :projects

 # …

end

class Project < ApplicationRecord

has_and_belongs_to_many :employees

 # …

end

The has_many :through Association

• A has_many :through association is often used to set up a many-to-many
connection with another model.

• This association indicates that the declaring model can be matched with zero
or more instances of another model by proceeding through a third model.

class Owner < ApplicationRecord

 has_many :pets
 has_many :visits, through: :pets

end

The has_one through: Association

• A has_one :through association sets up a one-to-one connection with
another model.

• This association indicates that the declaring model can be matched with one
instance of another model by proceeding through a third model.

class Visit < ApplicationRecord

 belongs_to :pet

 has_one :animal, through: :pet

 has_one :owner, through: :pet

end

 Choosing Between belongs_to and has_one

• If you want to set up a one-to-one relationship between two models, you'll
need to add belongs_to to one, and has_one to the other. How do you know
which is which?

• The distinction is in where you place the foreign key (it goes on the table for
the class declaring the belongs_to association), but you should give some
thought to the actual meaning of the data as well.

• The has_one relationship says that one of something is yours - that is, that
something points back to you.

• For example, it makes more sense to say that a supplier owns an account
than that an account owns a supplier.

The Farm, Chicken and Egg example

class Farm < ApplicationRecord

 has_many :chickens

 has_many :eggs, through: :chickens

end

class Chicken < ApplicationRecord

 belongs_to :farm

 has_many :eggs

end

class Egg < ApplicationRecord

 belongs_to :chicken

 has_one :farm, through: :chicken

end

More on Associations
https://guides.rubyonrails.org/association_basics.html

https://guides.rubyonrails.org/association_basics.html

Read more about ORM and ActiveRecord

• Agile Web Development with Rails 5.1, Chapters 3, “Rails Model Support”

• Agile Web Development with Rails 5.1, Chapters 20, “Active Record”

Read more about Migrations
• Agile Web Development with Rails 5.1, Chapters 23, “Migrations”

